Weishu Liu A/Prof.

  Dr. Weishu Liu received his bachelor degree from Chongqing University at 2003, and Ph.D  from University of Science and Technology Beijing (USTB)  at Jan. 2009. From Feb. 2009-Dec. 2012 he worked as a post-doctoral researcher at University of Washington and Boston College, respectively. Later, he joined in the Texas Center of Superconductor at University of Houston (TcSUH) as a senior associate researcher II from Jan. 2013.1-Jan. 2015. And then, he moved a thermoelectric company, Sheetak Inc., as a principal materials scientist. At Sep. 2016, Dr. Liu joined in Southern University of Science and Technology (SUSTec) as associate professor.  Dr. Liu has published 70 journal papers, with a total citation of >3000 times and an H-index 31 (Web of Science), and >4000 times with a H-index 32 (Google Scholar). He has hold 12 Chinese patents, 1 world patent, 3 USA patent. He wrote 4 book chapters for two books in the topic of thermoelectric materials and devices. He also served as the reviewer for the international journals such as Energy Environ Sci., Adv. Energy Mater., J. Am. Chem. Soc. Acta Mater., New J. Phys., etc. Dr. Liu was granted a President Gold Medal of USTB at 2009, Beijing Science and Technology Award at 2012, and “National 1000-Youth Talent” fellow at 2016. 

Education:

2003.9-2009.1 University of Science and Technology Beijing, Beijing, China

Materials Science and Engineering, Ms.-Ph.D

1999.9-2003.7 Chongqing University, Chongqing, China

Materials Science and Engineering, Bachelor

 

Research experiences:

2016.8.30-Now, SUSTec, ShenZhen, China

Materials Science and Engineering, Associate Professor.

2015.2-2016.6 Sheetak Inc., Austin, TX, USA

Principal Materials Scientist

2012.1-2015.1 University of Houston, Houston, TX, USA

Physics and TcSUH, Associate Researcher II.

2009.12-2012.12 Boston College, Boston, MA, USA

Physics, post-doctoral fellow.

2009.2-2009.11 University of Washington, Seattle, WA, USA

Mechanical Engineering, post-do Materials Science and Engineering ctoral researcher.


Honors & Awards:

Shenzhen Peacock Award, Category B, Shenzhen Municipality,China, 2017

The 12th Recruitment Program of Global Experts (Young Scholar Program), Organization Department of the CCCPC, China,2016 

Beijing science and Technology Award,2012

University of Science and Technology Beijing president Medal,2009

Top ten academic stars of University of Science and Technology Beijing,2008

Chongqing outstanding undergraduate design,2003

Research Interests:

Traditional thermoelectric materials: from fundament to application:

a) Electrons & phonons transport level:

Theoretical investigation: transport phenomena of electrons and phonons at nano scale.

b) Material level:

Ordering nanocomposite: synthesis method, favorable ordering morphology for next generation thermoelectric materials

c) Device level:

Reliable metal contact for the known thermoelectric materials: low contact resistance, high bonding strength, good thermal stability. 

d) System level:

Waste heat harvest system, home energy harvest system, thermal management system for electronic skin and bio-chips, etc. 

Selected works: 

1.     H. S. Kim, W. S. Liu and Z. F. Ren*, “The bridge between the materials and devices of thermoelectric power generators”,  Energy Environmental Science, 10:69-85 (2017).

2.     U. Saparamadu, J. Mao, K. Dahal, H. Zhang, F. Tian, S. W. Song, W. S. Liu* and Z. F. Ren*, “The effect of carrier and doping site on thermoelectric properties of Mg2Sn0.75Ge0.25”, Acta Materialia, 124:528-535(2017)

3.     J. Mao, H. S. Kim, J. Shuai, Z. H. Liu, R. He, U. Saparamadu, F. Tian, W. S. Liu* and Z. F. Ren*, “Thermoelectric properties of materials near the band crossing line in the Mg2Sn-Mg2Ge-Mg2Si system”, Acta Materialia, 103, 633-642 (2016).

4.     H. S. Kim, T. B. Wang, W. S. Liu*, Z. F. Ren*, “Engineering thermal conductivity for balancing between reliability and performance of bulk thermoelectric generators”, Advanced Functional Materials,26:3678-3686  (2016) .

5.     W. S. Liu, J. W. Zhou, Q. Jie, Y. Li, H. S. Kim, J. M. Bao, G. Chen*, and Zhifeng Ren*, “New insight into the material parameter B to understand the enhancement thermoelectric performance of Mg2Sn1-x-yGexSbx”, Energy & Environmental Science, 9, 530-539 (2016).

6.     W. S. Liu, H. S. Kim, S. Chen, Q. Jie, B. Lv, M. L. Yao, Z. S. Ren, C. P. Opeil, S. Wilson, C. W. Chu*, Z. F. Ren*, “n-type thermoelectric materials Mg2Sn0.75Ge0.25 for high power generation”, Proc. Nation. Acad. Sci. USA 112, 3269-3274 (2015).   

7.     H. S. Kim, W. S. Liu, G. Chen*, C. W. Chu*, Z. F. Ren*, New formulas for figure of merit and maximum efficiency in thermoelectrics,  Proc. Nation. Acad. Sci. USA, 112, 8205-8210 (2015).

8.     W. S. Liu, Q. Jie, H. S. Kim, and Z. F. Ren*, Current progress and future challenges in thermoelectric power generation:from materials to devices, Acta Materialia, 8, 357-376 (2015).

9.     W. S. Liu, C. F. Guo, Q. Zhang, Y. C. Lan, S. Chen*, and Z. F. Ren*, “Bi2S3 nanonetwork as precursor for improved thermoelectric performance”, Nano Energy, 4,113-122(2014).

10.  W. S. Liu, X. Yan, G. Chen*, and Z. F. Ren*, “Recent advances in thermoelectric  nanocomposites”, Nano Energy, 1, 42-56 (2012).  

11.  Bo. YuW. S. Liu, S. Chen, H. Wang, H. Z. Wang, G. Chen*, and Z. F. Ren*, “Thermoelectric properties of copper selenide with ordered selenium layer and disordered copper layer”, Nano Energy, 1, 472-478 (2012).   

12.  W. S. Liu, K. C. Lukas, K. McEnaney, S. Lee, Q. Zhang, C. P. Opeil, G. Chen*, and Z. F. Ren*, “Studies on the Bi2Te3–Bi2Se3–Bi2S3 system for mid-temperature thermoelectric energy conversion,  Energy & Environmental Science, 6, 552-560 (2013). 

13.  W. S. Liu, Q. Y. Zhang, Y. C. Lan, S. Chen, X. Yan, Q. Zhang, H. Wang, D. Z. Wang, G. Chen*, and Z. F. Ren*, “Thermoelectric property studies on Cu doped n-type CuxBi2Te2.7Se0.3 nanocomposites”,  Advanced Energy Materials, 1, 577-587 (2011).

14.  W. S. Liu, B. P. Zhang*, L. D. Zhao, and J. F. Li*, “Improvement of Thermoelectric Performance of CoSb3-xTex Skutterudite Compounds by Additional Substitution of IVB-Group Elements for Sb”, Chemistry of Materials, 20, 7526-7531 (2008).

15.  W. S. Liu, H. Z. Wang, L. J. Wang, X. W. Wang, G. Joshi, G. Chen*, and Z. F. Ren*, “Understanding of the contact of nanostructured thermoelectric n-type Bi2Te2.7Se0.3 legs for power generation applications”, Journal Materials Chemistry A1, 13093-1310 (2013).  


Weishu LIU

Associate Professor

Department of Materials Science and Engineering 

Southern University of Science and Technology (SUSTec)

 

Room 202, N11 Building

1088 Xueyuan Blvd., Nanshan District,

Shenzhen, Guangdong, China, 518055

 

Office: N/A

Email:liuws@sustc.edu.cn

Tel (Office): +86 0755-88018955

一、Research Assistants/ Engineer Opportunity

APreparation of thermoelectric materials and device assemblymaterials science, physicschemistry, electronic packaging or related major.

BDevice of Electrothermal measurement assembly, precision instrument, electronics computer or related major, have a good command of Labview and controlling Electrical measuring instrument

二、Postdoc Opportunity

Preparation of thermoelectric materials and device assembly

三、 Joint Master Opportunity

 Satisfies the relevant prerequisites of the Harbin Institute of Technology or The University of Hong Kong

 To Apply

Please send your CV (should include research accomplishments and interests, as well as list of publications) to Weishu Liu at liuws@sustc.edu.cn. The positions will remain open until filled.


Physics of Materials


  • 1

    Mechanical alloying synthesis and spark plasma sintering of CoSb3 2005

    W. S. Liu, B. P. Zhang*, J. F. Li* and J. Liu, “Mechanical alloying synthesis and spark plasma sintering of CoSb3”, Rare Metal Materials and Engineering, 34, 998-1001 (2005). 

  • 2

    High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering 2006

    H. Wang, J. F. Li*, C. W. Nan, M. Zhou, W. S. Liu, B.P. Zhang and T. Kita, “High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering”, Applied Physics Letters, 88, 092104-03 (2006).  

  • 3

    Thermodynamic explanation of solid-state reactions in synthesis process of CoSb3 via mechanical alloying 2006

    W. S. Liu, B. P. Zhang*, J. F. Li* and J. Liu, “Thermodynamic explanation of solid-state reactions in synthesis process of CoSb3 via mechanical alloying”, Acta Physica Sinica, 55, 0465-0471 (2006).

  • 4

    Preparation of AgxPbmSbTe2+m –based thermoelectric materials by MA-SPS method and evaluation of their thermoelectric properties 2007

    H. Wang, J. F. Li and W. S. Liu, “Preparation of AgxPbmSbTe2+m –based thermoelectric materials by MA-SPS method and evaluation of their thermoelectric properties”, Key Engineering Materials, 336-338, 850-853(2007).

  • 5

    Microstructure and thermoelectric properties of CoSb3 synthesized by MA-SPS method 2007

    W. S. Liu, B. P. Zhang*, J. F. Li* and H. Wang, “Microstructure and thermoelectric properties of CoSb3 synthesized by MA-SPS method”, Key Engineering Materials, 336-338, 834-837(2007).

  • 6

    Effects of process parameters on electrical properties of n-type Bi2Te3 prepared by mechanical alloying and spark plasma sintering 2007

    L. D.  Zhao, B. P. Zhang*, J. F. Li*, M. Zhou, and W. S. Liu, “ Effects of process parameters on electrical properties of n-type Bi2Te3 prepared by mechanical alloying and spark plasma sintering”, Physica B, 400, 11-15 (2007).

  • 7

    Electrical and thermal properties of carbon nano tube bulk materials: experimental studies for the 328-958K temperature range 2007

    H. L. Zhang, J. F. Li*, B. P. Zhang, K. F. Yao, W. S. Liu, and H. Wang, “Electrical and thermal properties of  carbon nano tube bulk materials: experimental studies for the 328-958K temperature range”, Physical Review B, 75, 205407-09 (2007). 

  • 8

    Effect of Sb compensation on microstructure, thermoelectric properties and point defect of CoSb3 compound 2007

    W. S. Liu, B. P. Zhang*, J. F. Li* and L. D. Zhao, “Effect of Sb compensation on microstructure, thermoelectric properties and point defect of CoSb3 compound”, Journal of Physics D: Applied Physics, 40, 6784-6790 (2007).

  • 9

    Thermoelectric properties of fine-grained CoSb3 Skutterudite compound fabricated by mechanical alloying and spark plasma sintering 2007

    W. S. Liu, B. P. Zhang*, J. F. Li* and L. D. Zhao, “Thermoelectric properties of fine-grained CoSb3 Skutterudite compound fabricated by mechanical alloying and spark plasma sintering”, Journal of Physics D: Applied Physics, 40, 566-572 (2007).

  • 10

    Enhanced thermoelectric properties in CoSb3-xTex alloys prepared by mechanical alloying and spark plasma sintering 2007

    W. S. Liu, B. P. Zhang*, J. F. Li*, H. L. Zhang and L. D. Zhao, “Enhanced thermoelectric properties in CoSb3-xTex alloys prepared by mechanical alloying and spark plasma sintering”, Journal of Applied Physics,102, 103717-07 (2007).

  • 11

    Thermoelectric and mechanical properties of nano-SiC-dispersed Bi2Te3 fabricated by mechanical alloying and spark plasma sintering 2008

    L. D. Zhao, B. P. Zhang*, J. F. Li*, M. Zhou, W. S. Liu and J. Liu, “Thermoelectric and mechanical properties of nano-SiC-dispersed Bi2Te3 fabricated by mechanical alloying and spark plasma sintering”, Journal of Alloys and Compounds, 455, 259-264 (2008). 

  • 12

    Enhanced thermoelectric properties of bismuth sulfide polycrystals prepared by mechanical alloying and spark plasma sintering 2008

    L. D. Zhao, B. P. Zhang*, W. S. Liu, H. L. Zhang and J. F. Li*, “Enhanced thermoelectric properties of bismuth sulfide polycrystals prepared by mechanical alloying and spark plasma sintering”, Journal of Solid State Chemistry 181, 3278-3282 (2008).

  • 13

    Enhanced thermoelectric and mechanical properties in textured n-type Bi2Te3 prepared by spark plasma sintering 2008

    L. D. Zhao, B. P. Zhang*, J. F. Li*, H. L. Zhang and W. S. Liu, “Enhanced thermoelectric and mechanical properties in textured n-type Bi2Te3 prepared by spark plasma sintering”, Solid State Sciences, 10, 651-658 (2008). 

  • 14

    Coupling scattering effect between grain boundary and point defect on the thermoelectric transport process in Co1-xNixSb3-ySey 2008

    W. S. Liu, B. P. Zhang*, L. D. Zhao, H. L. Zhang and J. F. Li* “Coupling scattering effect between grain boundary and point defect on the thermoelectric transport process in Co1-xNixSb3-ySey”, Acta Physica Sinica, 57, 3791-3797 (2008). 

  • 15

    Enhanced thermoelectric property originating from additional carrier pocket in Skutterudite compounds 2008

    W. S. Liu, L. D. Zhao, B. P. Zhang*, H. L. Zhang and J. F. Li*, “Enhanced thermoelectric property originating from additional carrier pocket in Skutterudite compounds”, Applied Physics Letters, 93, 042109-03 (2008). 

  • 16

    Improvement of Thermoelectric Performance of CoSb3-xTex Skutterudite Compounds by Additional Substitution of IVB-Group Elements for Sb 2008

    W. S. Liu, B. P. Zhang*, L. D. Zhao and J. F. Li*, “Improvement of Thermoelectric Performance of CoSb3-xTex Skutterudite Compounds by Additional Substitution of IVB-Group Elements for Sb”, Chemistry of Materials, 20, 7526-7531 (2008). 

  • 17

    Effect of mixed grain sizes on thermoelectric performance of Bi2Te3 compound 2009

    L. D. Zhao, B. P. Zhang*, W. S. Liu and J. F. Li*, “Effect of mixed grain sizes on thermoelectric performance of Bi2Te3 compound”, Journal of Applied Physics, 105, 023704-06 (2009). 

  • 18

    Effects of annealing on electrical properties of n-type Bi2Te3fabricated by mechanical alloying and spark plasma sintering 2009

    L. D. Zhao, B. P. Zhang*, W. S. Liu, H. L. Zhang and J. F. Li*, “Effects of annealing on electrical properties of n-type Bi2Te3fabricated by mechanical alloying and spark plasma sintering”, Journal of Alloys and Compounds, 467, 91-97 (2009). 

  • 19

    High-performance nanostructured thermoelectric materials 2010

    J. F. Li*, W. S. Liu, L. D. Zhao and M. Zhou, “High-performance nanostructured thermoelectric materials”, NPG Asia Materials, 2, 152-158 (2010).    (Cited: 203 times)

  • 20

    Experimental Studies on Anisotropic Thermoelectric Properties and Structures of n-Type Bi2Te2.7Se0.3 2010

    X. Yan, B. Poudel, Y. Ma, W. S. Liu, G. Joshi,  H. Wang, Y. C. Lan, D. Z. Wang, G. Chen* and Z. F. Ren*, “Experimental Studies on Anisotropic Thermoelectric Properties and Structures of n-Type Bi2Te2.7Se0.3”, Nano Letters, 10, 3373-3378 (2010).

  • 21

    Transmission electron microscopy study of Pb-depleted disks in PbTe-based alloys 2011

    H. Z. Wang, Q. Y. Zhang, B. Yu, H. Wang, W. S. Liu, G. Chen* and Z. F. Ren*, “Transmission electron microscopy study of Pb-depleted disks in PbTe-based alloys”, Journal of  Material Research, 26, 912-916 (2011). 

  • 22

    Enhanced Thermoelectric Figure of Merit of p-Type Half-Heuslers 2011

    X. Yan, G. Joshi, W. S. Liu, Y. C. Lan, H. Wang, S. Y. Lee, J. W. Simonson, S. J. Poon, T. M. Tritt, G. Chen* and Z. F. Ren*, “Enhanced Thermoelectric Figure of Merit of p-Type Half-Heuslers”, Nano Letters, 11, 556-560 (2011). 

  • 23

    Enhancement in thermoelectric figure-of-merit of n-type half-Heusler compound by nanocomposite approach 2011

    G. Joshi, X. Yan, H. Z. Wang, W. S. Liu, G. Chen* and Z. F. Ren*, “Enhancement in thermoelectric figure-of-merit of n-type half-Heusler compound by nanocomposite approach”, Advanced Energy Materials, 1, 643-647 (2011).

  • 24

    Thermoelectric property studies on Cu doped n-type Cux Bi2Te2.7 Se0.3 nanocomposites 2011

    W. S. Liu, Q. Y. Zhang, Y. C. Lan, S. Chen, X. Yan, Q. Zhang, H. Wang, D. Z. Wang, G. Chen* and Z. F. Ren*, “Thermoelectric property studies on Cu doped n-type Cux Bi2Te2.7 Se0.3 nanocomposites”,  Advanced Energy Materials, 1, 577-587 (2011). 

  • 25

    Disordered stoichiometric nanorods and ordered off-stoichiometric nanoparticles in n-type thermoelectric Bi2Te2.7Se0.3 2012

    C. E. Carlton, C. A. Kuryak, W. S. Liu, Z. F. Ren, G. Chen and Y. Shao-Horn*, “Disordered stoichiometric nanorods and ordered off-stoichiometric nanoparticles in n-type thermoelectric Bi2Te2.7Se0.3”, Journal of Applied Physics, 112, 093518 (2012). 

  • 26

    Thermal stability of thermoelectric materials via in situ resistivity measurements 2012

    K. C. Lukas, W. S. Liu, Q. Jie, Z. F. Ren and C. P. Opeil*, “Thermal stability of thermoelectric materials via in situ resistivity measurements”, Review of Scientific Instruments, 83, 115114 (2012). 

  • 27

    Transport properties of Ni, Co, Fe, Mn doped Cu0.01Bi2Te2.7Se0.3 for thermoelectric device applications 2012

    K. C. Lukas, W. S. Liu, Z. F. Ren* and C. P. Opeil*, “Transport properties of Ni, Co, Fe, Mn doped Cu0.01Bi2Te2.7Se0.3 for thermoelectric device applications”, Journal of Applied Physics, 112, 054509, (2012). 

  • 28

    Experimental determination of the Lorenz number in Cu0.01Bi2Te2.7Se0.3 and Bi0.88Sb0.12 2012

    K. C. Lukas, W. S. Liu, G. Joshi, M. Zebarjadi, M. S. Dresselhaus, Z. F. Ren, G. Chen and C. P. Opeil*, “Experimental determination of the Lorenz number in Cu0.01Bi2Te2.7Se0.3 and Bi0.88Sb0.12”, Physical Review B,  85, 205410, (2012).

  • 29

    Suppression of grain growth by additive in nano structured p-type bismuth antimony tellurides 2012

    Q. Zhang, Q. Y. Zhang, S. Chen, W. S. Liu, K. Lukas, X. Yan, H. Z. Wang, D. Z. Wang, C. P. Opeil, G. Chen* and Z. F. Ren*, “Suppression of grain growth by additive in nano structured p-type bismuth antimony tellurides”, Nano Energy, 1, 183-189 (2012). 

  • 30

    Effect of Silicon and Sodium on Thermoelectric Properties of Thallium-Doped Lead Telluride-Based Materials 2012

    Q. Y. Zhang, H. Z. Wang, Q. Zhang, W. S. Liu, B. Yu, H. Wang, D. Z. Wang, G. Ni, G. Chen* and Z. F. Ren*, “Effect of Silicon and Sodium on Thermoelectric Properties of Thallium-Doped Lead Telluride-Based Materials”, Nano Letters, 12, 2324-2330 (2012). 

  • 31

    Study of the Thermoelectric Properties of Lead Selenide Doped with Boron, Gallium, Indium, or Thallium 2012

    Q. Zhang, F. Cao, K. Lukas, W. S. Liu, K. Esfarjani, C. P. Opeil, D. Broido, D. Parker, D. J. Singh, G. Chen* and Z. F. Ren*, “Study of the Thermoelectric Properties of Lead Selenide Doped with Boron, Gallium, Indium, or Thallium”, Journal of the American Chemical Society, 134, 17731-17738 (2012).  

  • 32

    Heavy Doping and Band Engineering by Potassium to Improve the Thermoelectric Figure of Merit in p-Type PbTe, PbSe, and PbTe1-ySey 2012

    Q. Zhang, F. Cao, W. S. Liu, K. Lukas, B. Yu, S. Chen, C. P. Opeil, D. Broido, G. Chen* and Z. F. Ren*, “Heavy Doping and Band Engineering by Potassium to Improve the Thermoelectric Figure of Merit in p-Type PbTe, PbSe, and PbTe1-ySey”, Journal of the American Chemical Society, 134, 10031-10038 (2012). 

  • 33

    Enhancement of thermoelectric figure-of-merit by resonant states of aluminum doping in lead selenide 2012

    Q. Y. Zhang, H. Wang, W. S.  Liu, H. Z. Wang, B. Yu, Q. Zhang, Z. T. Tian, G. Ni, S. Lee, K. Esfarjani, G. Chen* and Z. F. Ren*, “Enhancement of thermoelectric figure-of-merit by resonant states of aluminum doping in lead selenide”, Energy & Environmental Science, 5, 5246-5251 (2012).

  • 34

    Stronger phonon scattering by large differences in atomic mass and size in p-type half-Heuslers, Hf1-f¬TixCoSb0.8Sn0.2 2012

    X. Yan, W. S. Liu, H. Wang, S. Chen, J. Shiomi, K. Esfarjani, H. Z. Wang, D. Z. Wang, G. Chen* and Z. F. Ren*, “Stronger phonon scattering by large differences in atomic mass and size in p-type half-Heuslers, Hf1-f­TixCoSb0.8Sn0.2­”, Energy & Environmental Science, 5, 7543-7548 (2012).

  • 35

    Thermoelectric properties of copper selenide with ordered selenium layer and disordered copper layer 2012

    Bo. YuW. S. Liu, S. Chen, H. Wang, H. Z. Wang, G. Chen* and Z. F. Ren*, “Thermoelectric properties of copper selenide with ordered selenium layer and disordered copper layer”, Nano Energy, 1, 472-478 (2012). 

  • 36

    Recent advances in thermoelectric nanocomposites 2012

    W. S. Liu, X. Yan, G. Chen* and Z. F. Ren*, “Recent advances in thermoelectric  nanocomposites”, Nano Energy, 1, 42-56 (2012).

  • 37

    Recent advances in thermoelectric nanocomposites 2012

    W. S. Liu, X. Yan, G. Chen* and Z. F. Ren*, “Recent advances in thermoelectric  nanocomposites”, Nano Energy, 1, 42-56 (2012).

  • 38

    The Current and Future Trend on Thermoelectric Materials 2013

    Z. F. Ren* and W. S. Liu, “The Current and Future Trend on Thermoelectric Materials”, Journal of Xihua University: Natural Science, 32(3):1-9 (2013). 

  • 39

    Fast phase formation of double filled p-type skutterudites by ball milling and hot pressing 2013

    Q. Jie, H. Z. Wang, W. S. Liu, H. Wang, G. Chen* and Z. F. Ren*, “Fast phase formation of double filled p-type skutterudites by ball milling and hot pressing”, Physical Chemistry Chemical Physics, 15, 6809-16, (2013). 

  • 40

    Effect of aluminum on the thermoelectric properties of nanostructured PbTe 2013

    Q. Y. Zhang, S. Q. Yang, Q. Zhang, S. Chen, W. S. Liu, H. Wang, Z. T. Tian, D. Broido, G. Chen* and Z. F. Ren*, “Effect of aluminum on the thermoelectric properties of nanostructured PbTe”, Nanotechnology, 24, 345705, (2013).  

  • 41

    Effect of Hf concentration on thermoelectric properties of nanostructured N-type half-Heusler materials HfxZr1-xSn0.099Sb0.01 2013

    S. Chen, K. C. Lukas, W. S. Liu, C. P. Opeil, G. Chen* and Z. F. Ren*, “Effect of Hf concentration on thermoelectric properties of nanostructured N-type half-Heusler materials HfxZr1-xSn0.099Sb0.01”, Advanced Energy Materials, 3, 1210-1214 (2013). 

  • 42

    High thermoelectric performance in n-type BiAgSeS due to intrinsic low thermal conductivity 2013

    Y.L. Pei, H.J. Wu, J. H. Sui, J. Li, D. Berardan, C. Barreteau, L. Pan, N. Dragoe, W. S. Liu, J. Q. He*and L. D. Zhao*, “High thermoelectric performance in n-type BiAgSeS due to intrinsic low thermal conductivity”, Energy & Environmental Science, 6, 552-560 (2013). 

  • 43

    High thermoelectric performance by resonant dopant indium in nanostructured SnTe 2013

    Q. Zhang, B. L. Liao, Y. C. Lan, K. Lukas, W. S. Liu, K. Esfarjani, C. Opeil, D. Broido, G. Chen* and Z. F. Ren*,“High thermoelectric performance by resonant dopant indium in nanostructured SnTe”, Proc. Nation. Acad. Sci. USA, 110, 13261-13266 (2013).

  • 44

    The Effect of Secondary Phases on Thermoelectric Properties of Zn4Sb3 Compounds 2013

    G. H. Zhu, W. S. Liu, Y. C. Lan, H. Wang, G. Joshi, G. Chen* and Z. F. Ren*, “The Effect of Secondary Phases on Thermoelectric Properties of Zn4Sb3 Compounds”,  Nano Energy, 2, 1172-1178 (2013).  (Cited: 5 times)  

  • 45

    Thermoelectric property study of nanostructured p-type half-Heuslers (Hf, Zr, Ti)CoSb0.8 Sn0.2 2013

    X. Yan, W. S. Liu, S. Chen, H. Wang, Q. Zhang, H. Z. Wang, D. Z. Wang, G. Chen* and Z. F. Ren*, “Thermoelectric property study of nanostructured p-type half-Heuslers (Hf, Zr, Ti)CoSb0.8 Sn0.2 ”, Advanced Energy Materials, 3, 1195- 1200 (2013). 

  • 46

    Understanding of the contact of nanostructured thermoelectric n-type Bi2Te2.7Se0.3 legs for power generation applications 2013

    W. S. Liu, H. Z. Wang, L. J. Wang, X. W. Wang, G. Joshi, G. Chen* and Z. F. Ren*, “Understanding of the contact of nanostructured thermoelectric n-type Bi2Te2.7Se0.3 legs for power generation applications”, Journal Materials Chemistry A1, 13093-1310 (2013).

  • 47

    Studies on the Bi2Te3–Bi2Se3–Bi2S3 system for mid-temperature thermoelectric energy conversion 2013

    W. S. Liu, K. C. Lukas, K. McEnaney, S. Lee, Q. Zhang, C. P. Opeil, G. Chen* and Z. F. Ren*, “Studies on the Bi2Te3–Bi2Se3–Bi2S3 system for mid-temperature thermoelectric energy conversion,  Energy & Environmental Science, 6, 552-560 (2013).

  • 48

    Substitution of Antimony by Tin and Tellurium in n-Type Skutterudites CoSb2.8SnxTe0.2−x 2014

    T. Dahal, Y. C. Lan, Q. Jie, W. S. Liu, K. Dahal, L. Tang, C. F. Guo and Z. F. Ren*, Substitution of Antimony by Tin and Tellurium in n-Type Skutterudites CoSb2.8SnxTe0.2−x, JOM, 66, 2282-2287 (2014). 

  • 49

    Anomalous transport and thermoelectric performances of compounds CuAgSe 2014

    A.J. Hong, L. Li, H. X. Zhu, X. H. Zhou, Q. Y. He, W. S. Liu, Z. B. Yan, J. M. Liu* and Z. F. Ren*, “Anomalous transport and thermoelectric performances of compounds CuAgSe”, Solid State Ionics, 261, 21-25 (2014).

  • 50

    Bi2S3 nanonetwork as precursor for improved thermoelectric performance 2014

    W. S. Liu, C. F. Guo, Q. Zhang, Y. C. Lan, S. Chen* and Z. F. Ren*, “Bi2S3 nanonetwork as precursor for improved thermoelectric performance”, Nano Energy, 4,113-122 (2014). 

  • 51

    Studies on mechanical properties of thermoelectric materials by nanoindentation 2015

    H. Ran, S. Gahlawat, C. F. Guo, S. Chen, T. Dahal, H. Zhang, W. S. Liu, Q. Zhang, E. Chere, K. White* and Z. F. Ren*, Studies on mechanical properties of thermoelectric materials by nanoindentation,Phys. Satus Solidi A, 212, 2191-2195 (2015).

  • 52

    Topological Effect of Surface Plasmon Excitation in Gapped Isotropic Topological Insulator Nanowires 2015

    M. D. Li*, W. P. Cui, L. J. Wu, Q. P. Meng, Y. M. Zhu, Y. Zhang, W. S. Liu and Z. F. Ren, “Topological Effect of Surface Plasmon Excitation in Gapped Isotropic Topological Insulator Nanowires”, Canadian Journal of  Physics, 93,591-598 (2015)

  • 53

    Effect of triple fillers in thermoelectric performance of p-type skutterudites 2015

    T. Dahal, Q. Jie, W. S. Liu, K. Dahal, C. F. Guo, Y. C. Lan and Z. F. Ren*, “Effect of triple fillers in thermoelectric performance of p-type skutterudites”, Journal of Alloys and Compounds, 623, 104-108 (2015).  

  • 54

    New formulas for figure of merit and maximum efficiency in thermoelectrics 2015

    H. S. Kim, W. S. Liu, G. Chen*, C. W. Chu* and Z. F. Ren*, New formulas for figure of merit and maximum efficiency in thermoelectrics, Proc. Nation. Acad. Sci. USA, 112, 8205-8210 (2015). 

  • 55

    Efficiency and output power of thermoelectric module by taking into account corrected Joule and Thomson heat 2015

    H. S. Kim, W. S. Liu*and Z. F. Ren*, “Efficiency and output power of thermoelectric module by taking into account corrected Joule and Thomson heat”, Journal of Applied Physics, 118, 115103 (2015). 

  • 56

    High thermoelectric power factor in Cu–Ni alloy originate from potential barrier scattering of twin boundaries 2015

    J. Mao, Y. M. Wang, H. S. Kim, Z. H. Liu, U. Saparamadu, F. Tian, K. Dahal, J. Y. Sun, S. Chen, W. S. Liu* and Z. F. Ren*, High thermoelectric power factor in Cu–Ni alloy originate from potential barrier scattering of twin boundariesNano Energy, 17, 279-289 (2015). 

  • 57

    Current progress and future challenges in thermoelectric power generation:from materials to devices 2015

    W. S. Liu, Q. Jie, H. S. Kim and Z. F. Ren*, Current progress and future challenges in thermoelectric power generation:from materials to devices, Acta Materialia, 8, 357-376 (2015).

  • 58

    n-type thermoelectric materials Mg2Sn0.75Ge0.25 for high power generation 2015

    W. S. Liu, H. S. Kim, S. Chen, Q. Jie, B. Lv, M. L. Yao, Z. S. Ren, C. P. Opeil, S. Wilson, C. W. Chu*and Z. F. Ren*, “n-type thermoelectric materials Mg2Sn0.75Ge0.25 for high power generation”, Proc. Nation. Acad. Sci. USA 112, 3269-3274 (2015). 

  • 59

    Transport and mechanical properties of the double-filled p-type skutterudite La0.68Ge0.22Fe4-xCoxSb12 2016

    T. Dahal, H. S. Kim, S. Gahlawat, K. Dahal, Q. Jie, W. S. Liu, Y. C. Lan, K. White and Z. F. Ren, Transport and mechanical properties of the double-filled p-type skutterudite La0.68Ge0.22Fe4-xCoxSb12, Acta Materiala, 117:13-22 (2016).

  • 60

    Concentrating solar thermoelectric generators with a peak efficiency of 7.4% 2016

    D. Kraemer, Q. Jie, K. McEnaney, F. Cao, W. S. Liu, L. A. Weinstein, J. Loomis, Z. F. Ren and G. Chen, “Concentrating solar thermoelectric generators with a peak efficiency of 7.4%”, Nature Energy 1, 16153 (2016). 

  • 61

    Thermoelectric properties of materials near the band crossing line in the Mg2Sn-Mg2Ge-Mg2Si system 2016

    J. Mao, H. S. Kim, J. Shuai, Z. H. Liu, R. He, U. Saparamadu, F. Tian, W. S. Liu* and Z. F. Ren*, “Thermoelectric properties of materials near the band crossing line in the Mg2Sn-Mg2Ge-Mg2Si system”, Acta Materialia, 103, 633-642 (2016).  

  • 62

    Importance of high power factor in thermoelectric materials for power generation application: a perspective 2016

    W. S. Liu, H. S. Kim, Q. Jie and Z. F. Ren*, “Importance of high power factor in thermoelectric materials for power generation application: a perspective”,  Scipta Materialia, 111, 3-9 (2016). 

  • 63

    New insight into the material parameter B to understand the enhancement thermoelectric performance of Mg2Sn1-x-yGexSby 2016

    W. S. Liu, J. W. Zhou, Q. Jie, Y. Li, H. S. Kim, J. M. Bao, G. Chen* and Zhifeng Ren*, “New insight into the material parameter B to understand the enhancement thermoelectric performance of Mg2Sn1-x-yGexSby”, Energy & Environmental Science, 9, 530-539 (2016).

  • 64

    Engineering thermal conductivity for balancing between reliability and performance of bulk thermoelectric generators 2016

    H. S. Kim, W. S. Liu* and Z. F. Ren*, “Engineering thermal conductivity for balancing between reliability and performance of bulk thermoelectric generators”, Advanced Functional Materials, 26, 3678-3686 (2016)

  • 65

    Carrier distribution in multi-band materials and its effect on thermoelectric properties 2016

    J. Mao, W.S. Liu*and Z. F. Ren*, “Carrier distribution in multi-band materials and its effect on thermoelectric properties”, Journal of Materiomics, 2, 203-211 (2016)

  • 66

    Thermoelectric performance enhancement of Mg2Sn based solid solution by band convergence and phonon scattering vis Pb and Si/Ge substitute for Sn 2016

    J. Mao, Y. M. Wang, B. H. Ge, Q. Jie, Z. H. Liu, U. Saparamadu, W. S. Liu* and Z. F. Ren*, “Thermoelectric performance enhancement of Mg2Sn based solid solution by band convergence and phonon scattering vis Pb and Si/Ge substitute for Sn”, Phys. Chem. Chem, Phys.18: 20726 (2016). 

  • 67

    Low temperature thermoelectric properties of p-type copper selenide with Ni, Te, Zn dopants 2017

    M. L. Yao, W. S. Liu, X. Chen, Z. S. Ren, S. Wilson, Z. F. Ren and C. P. Opeil, “Low temperature thermoelectric properties of p-type copper selenide with Ni, Te, Zn dopants”, Journal of Alloys and Compounds 669: 718-721 (2017). 

  • 68

    The bridge between the materials and devices of thermoelectric power generators 2017

    H. S. Kim, W. S. Liu and Z. F. Ren*, “The bridge between the materials and devices of thermoelectric power generators”,  Energy Environmental Science, 10:69-85 (2017).

  • 69

    The effect of carrier and doping site on thermoelectric properties of Mg2Sn0.75Ge0.25 2017

    U. Saparamadu, J. Mao, K. Dahal, H. Zhang, F. Tian, S. W. Song, W. S. Liu*, Z. F. Ren*, “The effect of carrier and doping site on thermoelectric properties of Mg2Sn0.75Ge0.25”, Acta Materialia, 124:528-535(2017).

  • 70

    Anomalous CDW ground state in Cu2Se: a wave-like fluctuation of the dc I-V curve near 50 K 2017

    M. L. Yao, W. S. Liu, X. Chen, Z. S. Ren, S. Wilson, Z. F. Ren and C. P. Opeil, “Anomalous CDW ground state in Cu2Se: a wave-like fluctuation of the dc I-V curve near 50 K”, Journal of Materiomics, 2017.LINK

  • 1

    CONTACTS FOR Bi2Te3- BASED MATERIALS AND METHODS OF MANUFACTURE 2014

    Zhifeng Ren and Weishu Liu, "CONTACTS FOR Bi2Te3- BASED MATERIALS AND METHODS OF MANUFACTURE",Attorney Docket Number:2483-07300,01/31/2014

  • 2

    New N-Type Thermoelectric Material Mg2 (Sn, Ge, Si) and Methods for Synthesis Thereof 2015

    Zhifeng Ren and Weishu Liu,"New N-Type Thermoelectric Material Mg2 (Sn, Ge, Si) and Methods for Synthesis Thereof",Attorney Docket Number:2483-06900,05/31/2015

  • 3

    Methods for synthesis of thermoelectric materials 2013

    Zhifeng Ren, Shuo Chen, Weishu Liu, Hengzhi Wang,Hui Wang,Bo Yu, Gang Chen, "Methods for synthesis of thermoelectric materials",Appl. No.: 13/788,932, 03/07/2013

  • 4

    THERMOELECTRIC MATERIALS AND METHODS FOR SYNTHESIS THEREOF 2011

    Zhifeng Ren, Weishu Liu, Gang Chen, Shuo Chen, " THERMOELECTRIC MATERIALS AND METHODS FOR SYNTHESIS THEREOF", International Application Number: PCT/US20 l 2/032495, 10/11/2012

  • 5

    一种提高Bi-S二元体系热电材料性能的方法 2008

    张波萍,赵立东,李敬锋,刘玮书,“一种提高Bi-S二元体系热电材料性能的方法”,专利号:ZL 2008 1 0211660. 9,2008年09月22日

  • 6

    一种Bi2S3纳米粉体的制备方法 2008

    张波萍,赵立东,李敬锋,刘玮书,“一种Bi2S3纳米粉体的制备方法”,专利号:ZL2008 1 0106199.0,2008年5月9日

  • 7

    一种提高N型多晶Bi2Te3热电性能的热处理方法 2007

    张波萍,赵立东,李敬锋,刘玮书,“一种提高N型多晶Bi2Te3热电性能的热处理方法”,专利号:ZL 2007 1 0175304. 1,2007年09月28日

  • 8

    一种细晶择优取向Bi2Te3热电材料的制备方法 2007

    李敬锋,赵立东,张波萍,刘玮书,“一种细晶择优取向Bi2Te3热电材料的制备方法”,专利号:ZL 2007 1 0175308.X,2007年9月28日

  • 9

    一种铜金纳米颗粒分散氧化物光学薄膜制备方法 2005

    张波萍,焦力实,刘玮书,董燕,王柯,张雅茹,“一种铜金纳米颗粒分散氧化物光学薄膜制备方法”,专利号:ZL2005 1 0011734.0,2005年5月18日

  • 10

    一种铜银纳米颗粒分散氧化物光学薄膜制备方法 2005

    张波萍,焦力实,刘玮书,董燕,王柯,张雅茹,“一种铜银纳米颗粒分散氧化物光学薄膜制备方法”,专利号:ZL 2005 1 0011733.6,2005 年5 月 18 日

  • 11

    纳米SiC颗粒复合CoSi3基热电材料及其制备方法 2006

    李敬峰,刘玮书,张波萍,“纳米SiC颗粒复合CoSi3基热电材料及其制备方法”,专利号:ZL 2006 1 0144006 1,2006年11月24日

  • 12

    一种四元方钻矿结构的热点材料及其制备方法 2008

    李敬峰,张波萍,刘玮书,赵立冬,“一种四元方钻矿结构的热点材料及其制备方法”专利号:ZL 2008 I 0119808.6,2008年9月11日

  • 13

    一种Ag纳米颗粒复合CoSb3基热电材料的制备方法 2008

    李敬锋,刘玮书,张波萍,赵立东,“一种Ag纳米颗粒复合CoSb3基热电材料的制备方法”,专利号:ZL 2008 1 0119809. 0,2008年09月11日

硕士

Shuangmeng Zhang

本科:北华航天工业学院 ,材料成型及控制工程

Jizhen Hu

本科:哈尔滨工业大学(威海),焊接技术与工程

Research Assistant

Yi Liu

本科:电子科技大学,电子信息工程系

Junhui Zhao

本科:九江学院,材料成型及控制工程

硕士:西华大学,材料工程,

本科毕业于桂林电子科技大学材料科学与工程专业;研究生毕业于桂林电子科技大学材料学专业,并于中科院苏州纳米技术于纳米仿生研究所联合培养。

Undergraduate

本科:南方科技大学,材料科学与工程

Traditional thermoelectric materials: from fundament to application:

a) Electrons & phonons transport level:

Theoretical investigation: transport phenomena of electrons and phonons at nano scale.

b) Material level:

Ordering nanocomposite: synthesis method, favorable ordering morphology for next generation thermoelectric materials

c) Device level:

Reliable metal contact for the known thermoelectric materials: low contact resistance, high bonding strength, good thermal stability. 

d) System level:

Waste heat harvest system, home energy harvest system, thermal management system for electronic skin and bio-chips, etc.